Ice Ic

Ice Ic ( Ice one cubic)

  • can be formed by condensation of water vapour at reduced pressure well below -80 °C
  • is metastable with respect to Ice Ih (approx. + 50 J/mol)
  • it seems to be very difficult to grow large phase-pure Ic ice crystals; they contain, to a certain extent stacking-disordered or hexagonal ice

Structural features:

  • like hexagonal ice cubic ice is a proton-disordered phase
  • every water molecule is involved in 4 H-bonds (2 acceptors, 2 donors)
  • tetrahedrally coordinated
  • O-D bond length approx. 101 pm
  • D …. O-D distance approx. 174 pm
  • O … O distance approx. 275 pm
  • 6-membered rings (exclusively chair conformation)

  • sometimes also called “cristobalite ice” because the oxygen atoms occupy the Si analogeous positions in the SiO2 phase cristobalite
  • it would be also justified to call it diamond-like ice 🙂
  • Space group Fd-3m
    • a = b = c = 6.3510 Å
    • α = β = γ = 90°

 

  Here, you can download the CIF.

[Atomic structure figures created with VESTA:
K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr.44, 1272-1276 (2011).]

Advertisements

Ice Ih

Ice Ih (Ice one hexagonal)

Structural features:

  • single molecule and molecular arrangement

  • Ice Ih is a proton-disordered phase

  • every water molecule is involved in 4 H-bonds (2 acceptors, 2 donors)
  • tetrahedrally coordinated
  • O-H bond length approx. 99 pm
  • H …. O-H distance approx. 175 pm
  • O … O distance approx. 275 pm
  • H-bond strength: approx. 21 kJ/mol
  • 6-membered rings
    • chair-like conformation in the (a,b) plane
    • boat-like conformation along the c direction

(graphic created with VESTA:
K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr.44, 1272-1276 (2011).

  • sometimes called “tridymite ice” because the oxygen atoms occupy the Si analogeous positions in the SiO2 phase tridymite
  • Space group P63/mmc
    • a = b = 4.4975 Å, c = 7.3224 Å
    • α = β = 90°, γ = 120°

 Here, you can download the CIF.

Eucryptite – not an altcoin but millionfold used in the kitchen

β-Eucryptite

  • Named from the Greek for “well” and “concealed”, in reference to its occurrence as intimate intergrowths with the mineral albite
  • It is the main component of the fameous glass-ceramic cooktops for stoves, known in the EU under the trademark Ceran® from Schott AG
  • Formula: LiAlSiO4
  • Space group: P6222 (No. 180)
  • Crystal system: hexagonal
  • Crystal class: 622
  • Lattice parameters: a = b = 10.500 Å, c = 11.194 Å, αβ = 90°, γ = 120°

Crystal structure (click on the picture to download the VESTA file):

(K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Crystallogr., 44, 1272-1276 (2011).)

  • SiO4 tetrahedra (orange)
  • AlOtetrahedra (light blue)
  • Li (purple/pink)
  • Oxygen (red)

For a 3D interactive version, see here:

https://skfb.ly/6wqY9

Valentinite

Valentinite

  • named in honour of Basilius Valentinus, a writer on alchemy. He is the supposed author of the first book to give a detailed description of antimony and its compounds.
  • Formula: Sb2O3
  • Space group: Pccn (No. 56)
  • Crystal system: orthorhombic
  • Crystal class: mmm
  • Lattice parameters: a = 4.89960 Å, b = 12.4490 Å, c = 5.41030 Å, α = β = γ = 90°

Picture: Christian Rewitzer | CC BY-SA-3.0


Crystal structure (click on the picture to download the VESTA file):

(K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,”J. Appl. Crystallogr., 44, 1272-1276 (2011).)

  • corner-connected SbO3 pyramids (purple)
  • Oxygen (red)

For a 3D interactive version on sketchfab, see here:

https://skfb.ly/6utNI

Thaumasite – a suprising mineral

Thaumasite

  • first described in 1878 in Sweden and named from the Greek, “thaumazein”, to be surprised, in reference to its unusual composition with carbonate, sulfate and hydroxysilicate anions
  • Formula: Ca3Si(OH)6(CO3)(SO4)
  • Space group: P63 (No. 173)
  • Crystal system: hexagonal
  • Crystal class: 6
  • Lattice parameters: ab = 11.0538 Å, c = 10.4111 Å, α = β = 90°, γ = 120°

Picture: Rob Lavinsky| iRocks.com  | CC BY-SA-3.0


Crystal structure (click on the picture to download the VESTA file):

(K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,”J. Appl. Crystallogr., 44, 1272-1276 (2011).)

  • CaO8 polyhedra (blue)
  • SiO6 octahedra (orange)
  • SOtetrahedra (yellow)
  • COtrigonalplanar coordination (gray)
  • Oxygen (red)
  • Hydrogen (white)

For a 3D interactive version on sketchfab, see here:

https://skfb.ly/6urWZ

Samsonite

Samsonite

  • Named after its type locality, the Samson Vein of Andreasberg silver mines, Harz Mountains, Germany.
  • Formula: Ag4MnSb2S6
  • Space group: P21/(No. 14)
  • Crystal system: monoclinic
  • Crystal class: 2/m
  • Lattice parameters: a = 10.3861 Å, b = 8.1108 Å, c = 6.6630 Å, α = γ = 90°, β = 92.639°

 


Picture: Christian Rewitzer  | CC BY-SA-3.0


Crystal structure (click on the picture to download the VESTA file):

(K. Momma and F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,”J. Appl. Crystallogr., 44, 1272-1276 (2011).)

  • MnO6 octahedra (purple)
  • SbS3 trigonal pyramids (blue)
  • AgSdistorted tetrahedra (gray)
  • AgStrigonal-planar coordination (green)
  • Sulfur (yellow)

For a 3D interactive version on sketchfab, see here:

https://skfb.ly/69Hqz